
UNCLASSIFIED

AD NUMBER

LIMITATION CHANGES
TO:

FROM:

AUTHORITY

THIS PAGE IS UNCLASSIFIED

AD240512

Approved for public release; distribution is
unlimited.

Distribution authorized to U.S. Gov't. agencies
and their contractors;
Administrative/Operational Use; 10 JUL 1960.
Other requests shall be referred to Office of
Naval Research, 875 North Randolph Street,
Arlington VA 22203-1995.

ONR ltr, 13 Sep 1977

\

THIS REPORT HAS BEEN DELIMITED

AND CLEARED FOR PUBLIC RELEASE

UNDER DOD DIRECTIVE 5200.20 AND

NO RESTRICTIONS ARE IMPOSED UPON

ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE;

DISTRIBUTION UNLIMITED,

Reproduced

hraed Services löclinical Information Agency
ARLINGTON KALI. STATION; ARLINGTON 12 VIRGINIA

NOTICE: WHEN GOVE
OTHER EiATA ARE USE
WITH A DEFINITELY Fl
THE U. S. GOVERNME
OBLIGATION WHATSOI
HAVE FORMULATED,
DRAWTNGS, SPECIFICS
IMPLICATION OR OTHI
OR AI-TY OTHER PERSC
PER^HSSION TO MANU
THAT MA.Y m ANY WA

RNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR
D FOR ANY PURPOSE OTHER THAN IN CONNECTION

\TED GOVERNMENT PROCUREMENT OPERATION,
NT THEREBY INCURS NO RESPONSIBILITY, NOR ANY
:VER; AND THE FACT THAT THE GOVERNMENT MAY
FURNISHED, OR IN ANY WAY SUPPLIED THE SAID
.TIONS, OR OTHER DATA IS NOT TO BE REGARDED BY
iRWISE AS IN ANY MANNER LICENSING THE HOLDER
N OR CORPORATION, OR CONVEYING ANY RIGHTS OR
FACTURE, USL OR SELL ANY PATENTED INVENTION
Y BE RELATED THERETO.

<3

,0 O'

T

mi cof¥

5•? u r n i 9

ASTSA

ASliNaTON MAll STATION

ARLiMbfO« 72, »fllöiNIÄ
S

At»r.i riSSS

Carnegie Institute of Technology
Pitttburgh 13, Pennsylvania

A S T 1 A

\h AUG 8 1960 I

T1P0R

Computation Center

COMPUTATION CENTER

GAHNEGIK INSTITUTE OF TECHNOLOGY

SCHKNLEI PARK

PITTSBUHGH 13. PENMSYLYANIA

ON THE SYNTA:t MACHINE AND THE

CONSTRUCTION OF A UNIVERSAL COMPILER

by A. E, Glennie

Technical Report No. 2
July 10, I960

PREPARED UNDER CONTRACT Nonr-760(lB)
(NR 049-141)

for
OFFICE OF NAVAL RESEARCH

Reproduction in Whole or in Part is Permitten for any Purpose
of the United States Government

TABLE OF CONTENTS

page
PAKT 1 1

1.2 A Notation for Syntax 3

1.3 Syntax Notation as Program. The Syntax Machine 5

loA Flow Diagrams for the Syntax Machine 8

1.5 Recursive Programs for the Syntax Machine 9

1.6 The Algorithmic Form of the Syntax Formalism 10

1.7 The Syntax Machins with Output 12

1.8 The Syntax of the Output 13

1.9 The Algebra of the Algorithmic Syntax 15

1.10 Examples 18

PART 2 Applications of the Syntax Machine 21

2.1 Example 1. Addition and Subtraction of Floating-Point Numbers 22

2.2 Example 2. Extension of Example 1 to Include Storage
Operations 24

2.3 Example 3. Arithmetic expressions using +, -, *, /, and
Parentheses 25

2,'u Example 4. Assignment Statements using the Expressions of Ex.3 31

2.5 Example 5. Simple Relational Expressions 33

2.6 Combinations of Relations 38

2.7 Example 7. Simple Branching Instructions 42

2.8 Example 8. Iteration Statements 43

PART 3

3.1 Declarations 46

3.2 Declarations about Syntactic Properties 47

3.3 Substitution Declarations 49

3.4 Declarations about Macro-instructions 52

Table of contents continued on next page

TABLE OF CONTENTS — continued

PA£T k The Assembler 57

4.1 The Operator, (D:a:l) 58

U.2 The Operator, (D:c:0) 58

4.3 The Operator, (D:d:0) 59

4.4 The Labeling Operator, (0:x:l) 59

4.5 The Operator, (0:v:r) 60

4.6 The Operator, (0:w:2) 6l

4.7 The Operator, (0:y:2) 61

4.8 The Operator, (0:e:0) 62

Introduction

To deal with the problem of many problem-oriented languages to be

translated to many machine languages, three main lines of attack have been

suggested.

(1) That the multiplicity of problem-oriented languages be reduced by

the adoption of a universal-algorithmic language, e.g.,ALGOL. This

legislative manner of abolishing the difficulty does not seem to be

a complete solution: such languages as have been proposed lack

universality in varying ways. For example ALGOL has no provision

for the processing of strings of symbols. In addition, it is not

at all clear that present ideas of what constitutes a universal

language will be valid in a future with time-sharing and even per-

haps self-organising computers.

(2) That a common machine-oriented language be devised. This language

(UNGOL for short) is thought of as an intermediary language through

which translation will be made. Each problem-oriented language is

to be translated to UNGOL by a translator that can be written in

UNGOL, An UNGOL to machine-language translation completes the

process.

(3) That translators be so constructed that they accept the description

of a source language and are thereby convert.ed into translators for

that language. For each machine, only one such translator need be

built.

This report follows the third approach.

In order to give a degree of universality to a compiler, two things must

be done. First, there must be some method of describing the source language;

and, second, there must be some way of dGs:riväi.j-, the properties of the

machine for which translation is maie-. In great measure, the first problem

was solved bv the introduction by Backus of a notation for describing the

v
syntax of ALGOL . This notation is related to similar notations in linguis-

tics (phrase-structure prammar in aubwtitution form } and jn logic
Q /

(productions). ihe second problem is one of considerable difficulty.

Although it is possible to describe the properties of a computing machine,

as is done in any reference manual, such descriptions are not in a form which

is simple to manipulate mechaniccilly. This report proposes an alternative. -

that the description of the source language should not be made independently

of the target language but should exploit any properties of the target language

that are useful. For example, if the machine has the ability in one instruc-

tion to add the absolute value of a number, the source language should be

described with that operation as one of its primitives, rather than the two

primitives of addition and taking the absolute value.

This report is divided into four sections. The first section proposes

a mechanism for scanning a linear text, and performing a syntactic analysis.

A pseudo-machine, the Syntax Machine is described, whose programs may be con-

sidered to define the language of the text. The output from the Syntax Machine

is a string whose evaluation leads to a (partial) translation of the source

text.

1/ J.W. Backus et. al.''Report on the Algorithmic Language ALGOL 6o";
Communications ACM 3 P-299, May I960.

2/ N. Chomsky "Three Models for the Description of Language.''
Tr. IRE, IT-2; No. 3. p.113; Sept, 1956.

2/ M. Davis Computability and Unsolvability. Ch.6; McGraw-Hill,
New York; 1958.

The second part of the report discusses, mainly by exaiaples, the

application of the Syntax Machine to translation for a particular target-

machine language, and shows how the syntax description may be written to

exploit the special features of the target machine.

The third sections considers the role of Declarations in the source

language and the mechanisms required to effect them in the translation process.

The fourth section deals with a supplementary process of assembly which is

required to evaluate the strings produced by the Syntax Machine,

1.2. A Notation for Syntax

The notation to be presented is similar to that of Backus, but with an

important difference» Whereas the notation of Backus enables texts conform-

able with the rules of syntax to be derived by substitutions, the present

notation is used to express a decision procedure that tests whether an example

of text conforms to the rules.

The decision procedure tests the legality of a string by applying one

of three types of tests to the string. Let us denote syntactic variables

by enclosing the name of the variable within the brackets < > , and denote

syntactic constants (i.e.., characters of the alphabet) by themselves. The

three types of test and their notation are:

(l) Is the string a value of a syntactic variable which is the concatenate

of other syntactic variables or constants?

This is expressed by the formula

<A> ;:= < B > < C > < D > ,., < X >

where juxtaposition in the formula signifies concatenation in the

string tested, and the sign s; = means that the variable on the left

is defined by the expression on the right.

(2) Is the string a value of a syntactic variable defined as being an

alternative of several variables?

< A > :J= < B > < G > < X> < D >

where the connective!denotes that the variables are alternatives,

in the sense that the string is a value of < A > if it is a value

of < B >, or of < C > and so on.

(3) Is the string a concatenate of several strings with the last string

repeated an indefinite number of times (perhaps none)?

This is expressed by the formula

<A>;s= <C> <D> ... r<X>)

where (1 denotes iterated concatenation, and the definiens has at

least one term before the iterated concatenation.

In the foregoing it has been tacitly assumed that tests implied by the right-

hand sides of these expressions had been taken in the order of writing, If

this is now adopted as a convention of the fonnalism, then the formulae

express algorithms for testing whether strings are values of syntartic varia-

bles.

The formulae now have the corresponding interpretations.

(1) The string is an < A > if a head string is found to be a < B > and

the head of the remaining part of the string is a < C >, and so on.

(2) The string is an < A > if it is a < B >, or if not that, then a < C >,

and so on.

(3) The interpretation is similar to that of the first type, but with

the last component iterated.

1.3 Syntax Notation as Program. The Syntax Machine

In this section a pseudo-machine, called the Syntax Machine, will be

defined that uses the definitions of the previous sections as programs to

decide whether strings are values of syntactic variables.

Consider a machine with an inpuc tape on each consecutive position of

which is inscribed one character of a string to be analyzed. The machine

obeys program steps of the form F,AT,AF where F specifies the action to

be taken, and AT,AF specify the addresses of the next program steps. For

each character of the alphabet and for some important subclasses there is a

machine instruction of a type called a ''Comparator.'1 A Comparator instruc-

tion, say for the character ''X'', will read the character presently under

the reading head on the input tape. If the character is ""x", then the

input tape is moved by one character position and the next instruction of

the program taken from address AT. If the character is not ''x", then the

tape is not moved and the next instruction is taken from address AF. Where

the Comparator is for a subset of the characters the action is similar; if

the character under the reading head belongs to the subset, the tape is moved

and the next instruction is taken from location AT.

In programming for this machine, another type of program step may be used,

the Recognizer: it is a subroutine composed out of Comparators and Recogni-

zers. To call a subroutine a special function of the machine, denoted here by

S*p AT, AF, is used. Its action is to copy the present position of the input

tape on to the current level of the control push-down list, together with the

addresses AT, AF, in parallel lists. Then the level of control is increased

by 1 and the next program step taken from location S. Two more special

instructions provide for exits from subroutines, in case of failure or success

of the decision process. These functions, called ''False"' and ''True,'1

decrease the level of control by 1 and cause the next program step to be taken

from the AF or AT addresses in the control push-down list. In the case of

''False'' the input tape is repositioned to be as it was when the subroutine

was entered.

By this means Recognisers can be constructed that act like Comparators,

but recognize strings of characters.

With this apparatus it is possible to write programs for the syntax

definitions of the previous section.

Examples

3 =

< A > ss«

< B >

< C > ;s =

< A > < A >

<!>;:= <-L>{<NL>}

which recognizes the occurrence
of the character a or b or c.

if A is as defined in Ex.1, this
recognizes the pairs of characters
aa.ab,ac,ba,bb,bc,ca,cb,cc.

recognizes x,xy,xyy,xyyy etc.

recognizes ALGOL identifiers, if L
is a recognizer (or comparator) for
alphabet letters and NL is a recognizer
for letters and numerals.

Programs for these examples may be written in the ''machine'' instruction

notation as follows;

Label Function AT AF

1) A
SI
32
S3

C(a)
C(b)
C(c)
False
True

34
S4
34

31
32
S3

2) B
35

A*
A*

35
S4

S3
S3

3) C
S6

C(x)
C(y)

36
36

S3
34

4) I
S7

L*
NL*

37
37

S3
34

Here C(x') denot es the Comparato r for x. and simil

In this notation, we can write programs for which there is no representa-

tion in the algebraic iormalism; this will be convenient on occasion» We

could define syntax in terms cf programs for the syntax machire: this, like-

wise, may enable us to write some forma of syntax not representable by the

algebraic formalism, or if so, only by uneconomical programs.

An additional feature of great power will be to allow subroutines to

store bits in a list working in parallel with the push-down list, so that a

syntactical property recognized in a subroutine may be tested and cause

branching in the routine controlling it. In a binary computer it will be

easy to store many bits in the same machine word (usually 30 at least in most

binary computers).

Two functions are required; *

(a) M(X) . Copy a bit into bit position X in the k-1 th level of the push-

down list; k is the current level of the routine in which M(X) acts.

Z is specified using the data field of the instruction; the next instruc-

tion is taken from the address specified in the AT field.

(b) K(X) . If the pseudo-machine is currently operating on level k, examine

the X bit on level k. If it is 1, proceed to the address specified by

the AT address; if it is 0 proceed to the address specified by AF.

When a subroutine is entered in level k, from level k-1 the set of bits

(or marks as they will sometimes be called) should be set to 0.

* There are many ways of doing this. It would be more economical
in machine time and storage to allow the M and K functions
to set and test many bits. For the simplicity of exposition,
we adopt the simplest M and K functions.

1.4 Flow Diagrams for the Syntax Machine

The simplicity of the operations of the syntajr. machine, makes it

possible to write flow diagrams precisely, by the use of the following

conventions„

(1) Unless othfervd.se indicated by arrows, the flow of control is

across the page from left to right, or downwards.

(2) Unless otherwise indicated, true exits from comparators are

written horizontally, and false exits vertically.

(3) Comparators are indicated by circles containing the character

to be compared; Recognizers are indicated by the name of the

recognizer, enclosed in angular brackets.

(4) To indicate the M function that places a mark in the push-down

list, write M(X) in the diagram, where X is the mark. For mark

comparators, use K(X), with exit conventions as with comparators.

(5) To minimize lin-js of contrcl, nodes of the flow diagram may be

labeled. Recognizer exits will be labeled ''True'' or "False.''

Example: A s; = < 13 > (a (may be diagramed as

1o 5 Recursive Programs for the Syntax Machine

In this section we investigate certain properties of the machine; in

particular, we ask for rules for constructing programs that will always

provide a decision. An example shows that it is possible for programs to

cycle indefinit«ly„ (e.g., single instruction whose AF address is the address

of the instruction itself). However, there is one main source of danger in

programs using notation of the three standard types, that of the careless

use of recursion. The manner of constructing subroutines allows recursive

definitions to be used.

Consider the program, <A>;s= <A> . In order to test

whether the text is a value of < A >, the question is asked, ''is the string

of characters starting at this point an example of < A >?"

This question is answered if two subsidiary questions are answered in the

affirmative. The first question is exactly the same as the original and is

asked at exactly the same position of the input tape. However, in the program

<A>ss= <A> this circularity does not arise, because the question,

"is the string an example of < A > ?" is never asked twice at the same posi-

tion of the input string. The tape will have moved because of the application

of the program step < B>, which must have a successful outcome (and hence the

input tape moves) before < A > is applied again. The first example is of a

program with an ''infinite loop;'' the second is a finite program, if applied

to a text of finite length (and in practice, all texts are finite).

Circularity in programs is not always so easy to discern as in the above

example. There is, however, a simple rule whose successive application checks

absence of circularity. A program step is non-circular if all program steps

in itn immediate definition are non-circular when it is defined by a formula

of type 2 (i.e., as a set of alternated) or (for formulae of types 1 and 3) if

10

the first step is non-circular. Any program step that is a Comparator is non-

circular. For example in the formulae of types 1 and 3

<A.>:;= <C> <D> ... or

<A>::= <C> <D> ... |<X>j

< A > is non-circular if < B > is non-circular. In the formula of type 2

< A > : s= < 3 > |<C> j<D>

< A > is non-circular only if < B >, < C >, < D > ... are all non-circular, *

All steps in a program must finally be non-circular. The proof of this rule

follows from the observation that a non-circular program step either exists

via the ''Fail'8 exit, or it moves the tape forward.

Recursive definition is permissible subject to this rule,

1,6 The Algorithmic Form of the Syntax Formalism

In this section we explore the difference between the use of the

syntax notation to express rules of derivation and rules of string analysis.

The discussion of the previous section shows that some forms of recursive

definition are invalid as rules of analysis, these forms may be expanded an^

rearranged into the form

<A>:J=<A> 1<C>
I

which expresses all the possible formulae rendered invalid as rules of analysis.

The strings generated by this rule of derivation are of the form CB ... B

i.e., those strings which have n > 0 strings of type B concatenated at the

right of a C, The algorithmic for... of the definition is<A> s;=<C> (

This shows how the invalid recursion may be avoided.

* For subprograms written in machine language, the rule is that
the program steps that read the heads of strings must be non-
circular.

11

Another difference is in the interpretation of the type 2 fomula; in

the algorithmic form the order of the terms is important since it is the order

in which tests are made. For example, the substioution rule

< A> :;= b | ba generates the two examples "b" and ' "ba. "

However, if this were taken as an algorithm and applied to tho string ''ba8'

it would test merely the first character "'b,'' and finding this to be a pos-

sible value would accept it, leaving the character ''a'' unscanned.

Consequently the correct algorithmic form would be

< A > :;= ba b

The ordering relation among the alternatives in the definiens of a type 2

fomtula may be expressed by the rule that if one recognizer A defines

strings that are heads of any strings defined by a recognizer B , then B

must precede A in the formula. If no ordering is imposed by this rule,then

it can be made to minimize cost by testing those strings that are frequent

before those that are rare.

Remark

The difference between the two formalisms is that in the case of the

algorithmic form a direction of scan is an essential part of the interpreta-

tion, whereas in the substitution form no notion of scanning is present. It

is suggested that source-language syntax be expressed in algorithmic form to

avoid ambiguity; this form may always be interpreted in substitution form

(but not vice versa, as we have seen). Two forms of algorithmic, syntax are

possible, according to the direction of scan; in this note the natural order

of scanning, as in reading, is assumed.

12

1.7 The Syntax Machine with Output

In previous sections we have discussed how to recognize texts that conform

to the roles of a syntax; the result produced by the machine has been only an

indication of validity.

An output can be generated as follows;

(1) Bach comparator instruction (reading a character of the input string)

can be modified to write the character on an output tape if it is

recognized by the comparator. Such comparators that produce output

will be written with underlining. Thus in the recognizer < A > ii=

: "'a3' and ''b'' will be written on the output tape but not

C '' whenever one is recognized by the recognizer < A >.

(2) Whenever a ''True'' return is made from a recognizer there will be

the option of writing a pattern of the form (p s q s r) on the cur-

rent position of the output tape,. This pattern may be written in the

data portion of the ''True" return instruction. The elements of this

pattern will have the interpretations;

2a. p specifies an instruction or a macro-instruction for subsequent assembly.

2b. q is a type number, specifying the manner in which the pattern

(p s q ; r) will be treated by an assembler whose input is the present

output tape,

2c= r is the number of characters or character groups written on the output

tape by the recognizer.

(3) If a recognizer is named by a pattern (p ; q ; r) the whole output

generated by this recognizer will contribute 1 to the character count

of any recognizer using it. If a recognizer is not so named, each

unit of output generated by it will contribute to the character count

of any recognizer using it.

13

(4) The action of naming vd.ll be signified in the algorithmic notation

by adding the naming pattern in quotation marks at the end of the

corresponding formula. E&le:

< C > :;= x /£] •*(P s Q : 0)"

will recognize x, xy; xyy, etc. on the input tape and generate the

corresponding patterns on the output tape, viz,

(PsQsO)

y.(PsQ:l)

y.y,(PsQ:2)

y.y.y,(PsQs3) and so on.

Note that the naming pattern has r=0 in the program.

In flow diagrams a true return with naming will be indicated by the

raming pattern, " (PsQsO) ':'.

(5) When a "False"' return is made from a recognizer, the output tape is

reposltioned to the position it had when the subroutine was entered,,

1.8 The Syntax of the Output

The language of the output is particularly simple» Its alphabet is formed

from the characters of the original alphabet together with the symbols, (P;Q:R)

which are written by naming. These latter are ''syntactic operatorssa whose

operands are either characters of the original alphabet or are expressions

formed by syntactic operators.

We define recursively the class of output strings as follows;

1. All characters from the original alphabet are values of syntactic variables.

2, Let V^ denote values of syntactic variables and (0jr) denote syntactic

operators of order r, P> 0. Then the expression, V-j_, V2, .., , 7r , (0sr)

is also a value of a syntactic variable, Examples are

(0:0)
V.(^l)
VtV,(0:l),(0:2)

14

3. The output string generated by a named recognizer is a value of a syntac-

tic variable.

In the processing of the output string, the values of syntactic variables

will be used to construct segnents of the target language according to nature

of the syntactic operators. The three parts of the syntactic operator have

separate purposes. P will be data, Q will tell how the data p and the data

from the R operands will be combined. Thus the output string may be viewed as

date, with the processing rules combined with it.

The output string is an example of postfix notation, similar to the prefix

notation of the logicians, but in reverse order. There is a particularly

simple algorithm to evaluate axprecsions in postfix notation. Let there be

a listp the push-down list L, each position of which is capable of holding

(directly or by indirect reference) the value of a syntactic variable. Then

as the output string is scanned syntactic variables are placed in successive

positions ui L until a syntactic operator appears. If the syntactic operator-

is of order r, then its operands are to be found in the current last r posi-

tions of L. The result of the evaluation of the expression specified by the

operator is than placed in the first of these positions, say position m, and

the process continued, with the next syntactic variable being read into posi-

tion m+1 - or if an operator is next read, its operands will be in the positions

M~q+1 through m (q is the order of the operö-tor).

For example, if the string to be processed is V-. , V0, (0,?!), (0ps2)

the successive configurations of the list L will be

(1) In = V-L .

(2) 1^ - V1 , L2 = V2 .

(3) 1^ =-■ V, , 1^ ' 01^V2^ • b-y application of 0^

(4) Lj = 02^V1»^V2^ • by aPPlication of 02°

IS

1„9 The Algebra of the Algorithmic Syntax

Let X^ (i= 1, 2 ...) stand in place of the forms a , < A >,

< A>| , *'(a^btO)'*, i.e., in place of recognizer (or comparator)

symbols, iterated recognizer symbols and naming symbols. Then the standard

formulae become

X_ = Xv, X. Xj ... X from type (l) and (3) formulae bed

\ Xu | X Xo ... X^ from the type (2) formulae.

The operations of this algebra are concatenation and ! . It is easily

verified that there are no commutative laws, but associative and distribu-

tive laws hold - thus

X-^X-, r ^2 1 '

(x1x2)x3 - x1(x2x3) ,

(^ 1X2) X3 = (X^) I^X)

X1 j Xg ^ ^2 I %

(X! X2) X. (x? x.)

X1 (X2 Xj) = (X^) (X^)

i'he distributive laws are j-inportant as they pxCvj.de ±KJT uos&xui.^ cconomi-Ziation.

One particular form of parenthesized-syntax notation is of importance

because (in this case only) the parentheses do not imply an internal subroutine

for the bracket. This might be called normal-concatenated form, of which an

example is

Xix2(X3 | ^ I x5) X/Xy(Xg X^) X-Q

The flow diagram for this is

> True

^ False

16

The general form of the normal concatenated form is

A-^A^Ao „.. A^ where the A are either single symbols or are of the form

(Bj^ B2 ,... %) where the B ar« also single symbols.

X. ... requires all \ The other normal form, example W=X^ (X2Xo)

alternates which are concatenates (except for a concatenate in the last

position) to be constructed as subroutines. The above form must be program-

med as Z = XpXo , W = X-]ZXi =„a An exception is made for concate-

nated pairs, where the second member stands for a naming operation.

All these rules follow from the interpretation of the notation. For

example, consider (.X-iXj) X~ , where X2 is not a naming operation. This

program tests a string using X-^ ; if this succeeds, the X^ is applied to

the next part of the input string. If X2 fails, the string must be reposi-

tioned so that the alternate test X3 may be correctly applied. This can be

done only by making (X]_X2) a subroutine (whose False sxit will do the

repositioning).

Identity and Infinity symbols

The notation may be enriched by the addition of three symbols ^V, , "V

and oO , corresponding to comparators which have respectively

_A- ? no false exit, does not read the input,

~\/~ i no true exit, does not read the input.

oO; no exits at all.

The first two of these symbols are the identity elements for concatenation

and alternation. They allow certain transformations to be made in expressions

of the nctaLion, according to the rules given at the end of this section. For

example, .
Z"X1X2 1 X1 - X1X2 Xx-A« X1(X2 | -A.) by the distribution law.

X2 LA.is a recognizer v.rj.th its false exit joined to its true exit.

17

The following equations hold

JVX = X

X^_ - X

V X = X

x Iv" = x

Ax ~ A-

[^ ■ oo

= x|A

x \J\S\ = oo

= (A | A) jV|

18

1.10 Eicaniples

Triese exaraples are for the pseudo-machine with no output» They are

z 1/
comparable with the descriptions of ALGOL 60

(1) Programs in problem-oriented languages are usually written as sequences

of statements: there may be sevftral types of statement,,

<Program> ;;= <Statement> < <Statem3nt> [

^tatemen^ i % = <Statement 1> <Statement 2> I <Statement 3>

This states that f«. program is composed of a sequence of statements,

and that there is at least one statement in the sequence. There are 3

types of statement. Each statement type would, of course, be defined

in terms of simpler syntactic variables - and in the limit, in terms of

the alphabet. The application of <Program> to a string will determine

whether the string is an example of a text in the language.

(2) Consider algebraic prefix notation using *, *, / as binary operators

and - as an unary operator. Then < E > is the recognizer for the

notation, where

<E> ::= <A><G> < D > < V >

<A> :s= - <E>

 s ? = <■ <E><E>

<C> s;» * <E><E>

< D > s s = / < E > < E >

< V > is a recognizer for variables and constants.

This example shows the use of recursive definition, and it is easily

1/ JoW, Backus et.al., "'Report on the Algorithmic Language]
ALGOL 60, Communications. ACM 2J p.299, May, I960.

19

shown to be non-circular. It may be written in normal concatenate form as

<E> ::= < A > < 7> (+ 1/ |*) <E> <E>

where <A> s;= - <E>

The parentheses are used in this example as characters in the syntax

language: it is assumed that they will not occur in the text analyzed.

Note that in this example the ordering of the alternates is not

important.

(3) Normal Algebraic Notation

We repeat example (2) but now using the more usual infix notation,

with the operators as binary connectives.

<E> ::=<F>[<S>j 3.1

<S> t%= <+-> <T>

< F > :;= < T >

< +- > ss= + I

•^ i >> := < A >

< S >

<x V ->

3.2

3.3

3.4

3.5

< A > ss= < V > <*/ > < T > 3.6

< */ / 3.7

The notation may be extended to include parenthetical notation in the

text by replacing < V > by < W> in 3.5, 3.6, and adding two more

lines»

< W > :;= < V > | < (E) > 3.8

< (E) > ;:= (< E >) 3.9

20

Remarks

3.1 says that an algebraic sxpression is composed of a first part

< F >, followed by an indefinite number of subsequent parts < S >, which are

additions or subtractions of terms < T >. 3»3 says that the first part is

either a signed term < S > or an unsigned term < T >. By 3.5 < T > is either

a product-quotient form < A > or merely a single variable < V >| it is impor-

tant to test < A > before < V >, sine« < V > occurs as the first element in < A >.

Suppose the order of 3-5 had been changed. Then

< T > < V > < A >

: = < V >

: i = < V >

;;= < V >

< y > < */ > < T >

71 < */ > < T >

from 306,

by the distribution law.

using the laws of the algebra.

Clearl""" somethin0" is vroii17 with this as vras to be expected.

21

Part 2. Applications of the Syntax Machine

In the first part of this report the syntax machine was defined and is

properties discussed. Now we go on to discuss its application, and in so

doing we see what are the desirable and necessary properties of an assembly

program which can process the output from the syntax machine. The whole

translation will be a multi-stage process in which syntax analysis alternates

with assembly operations. The assembly operations construct new strings

which may then undergo syntactic analysis. How many times this has to be

done will depend on the source language. Whether the alternation of syntax

analysis and assembly is made over segments of the text or over the whole text

depends also on the source language and on the amount of storage that may be

available for intermediate strings.

For example, any language that contains declarations will require several

alternations between syntax and assembly processes. Consider how names are

used for different types of numbers, e.g., fixed-point and floating-point

numbers. If the distinction between these classes of numbers is made by a

declaration, rather than by properties of the names themselves (e.g., by de-

fining integer variable names to be those that begin with I, J, K) the declara=

tions must be used to form tables of the names of each class. These tables

must then be consulted to find the syntactic properties of the objects named,

whether they are integer variables, or are functions and so on.

This table lookup feature is not a property of the syntax machine as

described! it is proposed that this should be part of the assembly processes.

Syntax analysis is, however, usually sufficient to separate names from operator

signs, since it is unusual for the syntax of names to change within segments

of a program. Thus, the strategy for translation would be

(a) Use the syntax analyser to discover the names and operator signs in

segments of the text.

2?

(b) In the output there will be values of syntactic variables corresponding

to names, literal constants and other character groups. For example,

the name ABC will appear on the output from the syntax analyzer as

A, B, C, (0;3), where 0 will specify an assembly process, that might

replace A, B, C, (0t3) by a "co-ordinate name"]!, meaning that ABC

is the n'th integer-variable name. I will be constructed from the

position of ABC in the table of integer names, and will be stored as

a single character that will be recognized syntactically in a later

use of the syntax analyzer as a member of the class I.

(c) The syntax analyzer can then be applied to strings which now consist of

operator signs from the original text and co-ordinate names which stand

in place of the original names and literal constants.

These semantic considerations shall be deferred to part 3 of this report.

They are mentioned here so that it will be possible to use co-ordinate names

in this part without implying that theee co-ordinate names are written in the

original text. We shall also be able to treat words like "if," "then,"

"do" and other such words as single characters of the string analyzed. This

will simplify the exposition. We shall therefore, in this part, now ignore the

interplay between syntax analysis and assembly.

2.1 Example 1. Addition and Subtraction of Floating-Point Numbers

(a) Source language syntax.

< E > ss= < F >{< 3 >} 1.1

<F> :i=<Vi>j<Ci>j<S> 1.2 *

< S > ?;= (+ I -) < F> 1.3

For example s V^ + C^ - V2 . 1.4

* < 7^ >, < Ci > are recognizers for floating-point variables and
constants.

23

(b) Syntax Program with annotations

<E> ::= <F> /< S >J "(OsvsO)" 1.5

<F> :;= -< T> "(GLSsa^O)" | (+ | 7L) < T > "(CLA;a:0)'° 1.6

< S > ;:= < SI > I < S2 > 1.?

<S1>::= +<T> ••(FAD:a:0)" 1.8

<S2>;;:= -<T> " (FSBsasO)*s 1.9

< T > s ;= < ^ > I < 02 > 1.10

Explanation:

The source language syntax defines valid strings to consist of a first

signed or unsigned term < F >, followed by an indefinite number of subsequent

terms < 3 >, which are signed. In step 1.5, the naming operation "'(OSTSO)"

represents an assembly operation that will put together the separate terms to

form the whole expression„ These terms each generate an instruction in the

machine language by naming operations such as ""(CLAsasO)'' where ''a'" specifies

an assembly operation to combine tne data portion of the naming operation, e.g.,

CLA, with the name or symbolic address of the variable or constant.

The application of the syntax program to the example 1.4 produces an

output string

Vi , (CLAsasl), Gi , (FADsasl) , V2 , (FSBsasl) , (Chv^) 1.11

By virtue of the step 1,10 the names of variables and constants are copied

from the input to the output strings: these are the only characters so copied.

The choice of machine instruction is made in SI and S2 from the signs + or -

on the input string but these signs do not appear in the output, being replaced

by the corresponding machine instructions from the naming operations„

When the string 1.11 is assembled, two processes occur

(l) Combination of a symbolic address with a machine instruction.

V , (OPsasl) —> OP V . and

24

(2) Combination of several segments of code (here 3 separate machine

instructions) into one segment.

Si, 32, ,.. , 3r, (0;v:r) _> SjSg ... Sr

Such assembly operations convert 1.11 into 1.12,

CLA V!

FAD G! 1.12 *

FSB V2

which is in the target language.

2.2 Example 2. Extension of Example 1 to Include Storage Operations

Esample 1 may be extended to include simple assignment statements,

so that statements like Vo = Vi + C^ - V2 may be translated.

We give tw examples, where only one assignment of a value is made, and where

many variables may be assigned the same value, as in V^ = V2 = V'j + V^ .

(a) Single assignment.

<H> !!= <G> <E> "(OsbsO)" 2.1

<G> ::=<Vi> = "(STO;a:0)" 2.2

Here < G> represents the assignment part *'V ='', The ''=" sign is not

transmitted to the output string, being replaced by the naming data. The

two parts of the assignment statement are < E > which is the < E > of

example 1, and < G >. The naming operation '!(C:;b:0)" will combine these

so that the assignment follows the calculation s it should always have

two arguments which are blocks of code to be interchanged.

The meanings of the machine functions are:

CLA ; clear the accumulator and place the quantity addressed
in the accumulator,

CIi3 t clear and subtract.
FAD ; add into the accumulator, using floating-point arithmetic.
FSB : subtract from the accumulator, floating point„

2b

(b) Multiple assignment

<H> ;:=<!> <E> "(0:bsO)" 2.3

<I> :;= <G> f<G> "(0:v;0)" 2.4

where < G > is an in 2„2 . Step 2,4 says that there may be one or more

assignments, which are grouped by an assembly operation "v"' before

being interchanged, according to 2.3i by '"b.''

2.3 Example 3. Arithmetic expressions using +.-.*,/ and parentheses

We use the JEM 709 a3 the target machine. In this machine, as in many

others, there are two registers concerned with multiplication and division.

One register, the AC, is concerned with addition and subtraction, and holds

the result of a multiplicationj in it must be placed the numerator before

division. The other register, the MQ, holds the result of a divisionj in it-

is also placed one of the factors of a product before multiplication. Conse-

quently, there are certain forms ror which it is unnecessary to use intermediate

storage; for floating-point arithmetic these are

(a) + X*Y/Z* OO0 , where multiplication and division alternate.

(b) + X*I/ ... /U*W i 3 + T ... , where multiplication and division

alternate in the first term, the last operator in the first term

is * and then follows addition or subtraction.

(c) + (+X/Y* ... *Z + A ...) /U. ... , where a parenthetic expression

will provide a result in the AC, which is the numerator for a

division.

For problems of this sort we must use the machine instruction program-

ming for the syntax machine. We shall see here the use of the marking and

sensing operations, M(X) and K(X)!, which allow notes to be kept of where inter-

mediate results are to be found at the various stages in the object program.

In devising programs of this sort, it is fruitful to consider the states of the

target machine as it would obey the program we wish to generate. There will be

26

states in tho syntax, program corx-esponding to the states in the object prograiti

being generated; these states in the syntax program will be the states at the

connnencement of the program steps (or on lines in the flow chart). Sometimes,

a state of the syntax machine) will also be represented by marks placed by M

operations, for later sensing by K opeeations,,

There are four principal states of the target machine called A+, A-, Q+

and Q-, when the AC, MQ. is holding positively (negatively) the result of a

partial evaluation of the expression. Correspondingly named states exists in

the syntax machine. These four bit-symbols are used by M and K operations,

and are also used as labels in the flow diagram. An example of the use of this

notion of states in the object machine occurs in the scanning of the expression

-X'^Y+Z''. This is analyzed by the syntax program as - (X*Y-Z) since we can

only form products positively in the AC, and may be able to absorb the negative

sign on - (X*Y-Z) in a later operation, so that A+ (-X*I+Z) can be computed as

A- (X*Y-z), for example. The states that occur during the computation (and

during the syntax analysis are

text: -X* Y +Z

states: Q- A- A-

output form: X« Y -Z

and since the end state is A- , the object program, will produce the negative

of the -X*Y+Z , There will be a mark. A-, in the marker part of the push-down

list, so that it can be subsequently recognized that a program to evaluate the

negiMve "ras been constructed. In general, the process brings negation from

the in .'!o of parentheses to the outside; at the worst, therefore it will only

be necessary to provide a change of sign for any parenthesized expression, and

then only for the complete expression and not for any of its parts. Indeed the

only occasion when a negated result will be produced .may be discovered by the

application of the rules:

2?

(1) A variable or constant has parity +l .

(2) A parenthesized axpression has the parity of its first term.

(3) If the first term of an expression is of product-quotient form,

its parity is given by rules (/+), (5) and (6). Otherwise, the

parity is +1 .

(4) If the first of the multiplication or division operators is ''*'',

then the parity of the term is the evaluation of the term

(including leading + or - signs) using the parities of the

components as values.

(5) If division comes first, and the first numerator is a variable

or constant, then the parity is the evaluation of the term using

parities, talcing that part to the right of the first ''/"sign only.

(6) Otherwise, proceed as in rule (/+), but with "/" instead of ''» " .

If the parity of the expression is -1, its negative will be produced.

The target-machine instructions used are

LDQ load the KQ register.

FMP multiply the number in the MQ by the number in the

specified address. The result appears in the AC.

FDH divide the AC by the r.umber from storage: the quotient

appears in the MQ.

XCA interchange the contents of the AC and MQ.

FAD add to the AC.

FSB subtract from the AC.

CLA clear the AC and add. STO store the AC.

CLS clear the AC and subtract. STQ store the MQ.

In the course of evaluation it is sometimes necessary to store intermed-

iate results: for this purpose the assembly process following syntactic

analysis must be able to generate the address of a working location. The

syntactic operator (Dsc:0) does this, where D will be the machine instruction

required to store the result. If a parenthetical expression, say (A-B) ,

28

requires the rssuli to be stored, the corresponding output produced by the

syntax analyzer will be

... , A, (CLArasl), B, (FSB:a:l), (STO:c:0), (0:v:3)

(STO:c:0) will obtain a working space location, say W, and construct the

instruction STO W , leaving it in the push-down list of the assembler so that

when the operator (0:v:3) is processed it will have as arguments the three

assembled single instructions (in this case) CLA A, FSB B, STO W . (0:v:3)

assembles this into a block of code, placing the name of the result W in the

push-down list. Later W will be combined with a machine instruction by an

operator of type (D:a:l), at which point W could be returned to the list of

addresses available for use as working space.

The syntax program flow diagrams follow. < E > is the recognizer for

arithmetic expressions; successful outcome will be marked in the syntax machine

push-down list by A+, A-, Q+ and Q- according as the result in the object

machine would be in the AC (positively or negatively) or the MQ (positively or

negatively).

page 29

< S > s

c

L

9i A*

G>

A Al

- <P3> —(T) K(A+) (7/— <:F,DH+> - —> i

<7-^> > K

<V/-> >A1

<V-> ^ A+

I
I

False

*) <XCA>-

A+ A2

-> HI

K(A-) (7 ■y -<FDH->- ^B

•<XCA> -> B2

I
A- HJ.

< E >—()^)-^A—>K(Q+) Q1^ <FKP+> > A

<V->?> >B1

<7/+> >-M

<V+> >A+

False

^OCC^ > Al

91 ^

K(Q-) (*y*- <FMP-> y A

<XCA>-
■>^

error

A-

-<XCA>—j

 A<FAD+>-

G
Y

-<XCA>—.

 i-<FS B+> (

M(Q+)

M(A+)

<XCA>

o- 1 ♦-<FSB->-

0-
M(Q-)

(3>
-<XCA>—|

 i-<FAD->-

V V

K(A+)—^A+

K(A-)—>-A-

M(A-)
 #

L rror
-> TRUE

<FDHt>

<FMPt>

<FÄI)+>

«CFAD->

<FSB+>

<FSB->

<"v*>

<7/->

<7/+>

<V>

<P>

<STa>

<PAH>

<P3>

(J) <PAE>—{))- K(-)-

—*>—

page 30

-M(Q

-M(Q + ± h^ "(FDH:a:0)"

T)—<PAfi>—(T>- i
-<PAK> (7) M(A+)-

-M(AT

■M(A±

-M(A+)-

-K(-)-

—© <PAH>—<T)- M(A->-

0 ^AI^—Q>

P ^AK* (7>-

.M(A-)-

M(A+)-

-M(A+)-

-M(A-)-

-M(A.)-

-K(-)-

—•——

■K(-)-

-K-)-

—11

'(FMP:a:0)"

'(FSBsasO)"

,(FAD^alO),'

'(PSB:a:0)"

'(FADsasO)"

'(FAIhasO)"

'(FSBtasO)"

'(FADsajO)"

'(FSBtasO)"

<V> * "(uJQ:a:0)"

<V> / "{GLS'.&tO)"

<7> I "(CLA:a;;0)"

<V-> :;= <t> ;:(CLS:asO)Ji

<V+> :;= <y> "(CLA:asO)"

<XCA> '.%" "(XCAsasO)'8

;= <V,-> <Ci>

<E>- •K(A+)-

K(l-)-

K((i->-

-<STa>

-<STa>-

-<STQ>-

'(3T0:c:0)"

 <P>

<STQ>

-M(-)-

->. True

(STQscsO)"

K(+)- -M(0-

^CE>- •K(A+y

K(A-)-

K(i+)-

K(Q-)-

-M(-)-

-M(A-)-

-M(A+)-

-M(Q-)-

-M(Q+)-

^"(0^:0)"

-> True

31

2.4 Bxample k. Assignment Statements uainR the Sxpreaaions of Ex.3

We treat assignment statements like A=B= ... C= E where E is an expression

of the type < E > of the previous example.

The source syntax is < AS > :2= < ^ > = < AS1 >

<AS1 > ::= <E> I <AS>

At this point we could merely treat Ex. 4 in the same manner as Ex. 2.

A feature of this type of treatment for this case would be that we have to

decide which type of storage instruction to use according to the mode A+, A- or

Q+, Q- of the right hand side. In Ex, 2, it was possible to know what type of

storage instruction was required as soon as the " = "wa3 scanned. In Ex. 4 ,

this is not so„ It could be assumed that the mode was A+, say, and scan the

right-hand side. If the assumption were correct, the assignment statement

could be constructed. If not another assumption could be tried, and the

assignment statement re-scanned„ This might have to be repeated before a

correct assumption is made.

In example 3 the necessity for multiple scanning is largely avoided by the

use of state markers: in example 4, to save multiple scanning we require new

apparatus, which may be a part of the assembly process rather than the syntax

machine. We must have some process of re-ordering so that the names of the

variables on the left of the "'=" sign may be combined with functions chat can

be specified only after the right-hand side of the assignment statement has been

scanned. Recall that the symbols copied from the input to the output tapes of

the syntax machine are in the same order on both tapes. For the statement A=E

we can most simply generate an output A,(E)VF where (E) stands in place of

the string generated by the right-hand side, and will eventually in the

assembly process be represented by a single level of the assembly push-down

list. The symbol F stands for a syntactic operator, or set of syntactic opera-

tors which, because their generation by the syntax machine follows the generation

32

of (E), can be made to depend on the mode of (E).

The primitive operator that we seek is a sort of interchange operator

'*(0:e:0)" of actual degree 2, but appearing with 0 as its ostensive degree.

To use it, and to preserve the well formed nature of the postfix notation at

all stages of its processing we require a null syntactic variable .AQ . The

action of this operator is defined hj the transformation

(D) , (E) , (0:e:0) - A0 , (E) , (D) ... 2,4.1

in the assembler's push-down list. The null symbol ./L. will not occur as

an argument of all syntactic operators| it will occur as an argument of

(0:v:0) but not of (0:asO).

The flow diagram for the assignment statement follows

<AS> ::= <Vi> = <AS1> ^ (O'.vtO)"

<INT> ::= "(OsesO)"

<STa> :-= <INT> "(STOsasO)"

<AS1> -<AS>

<AS2>.

I
fail

-4- -K(A)-

KCQ)-

■<STa>-

-<STXS>- -> True

<AS2>

fail

-K(AH)-

K(A-)-

K(Q+)-

-<CHa>-* M(A 1
-M(Q)-4—"(Otv:0)':

K(Q-)- •<XCA>-1

<CHS> (GHS-a;0)'

33

If this program is applied to the assignment statement "B=C/D" ,

the resultant output is

B, G, (CLA:a:l), D, (FDH:a:l), (0:v:2), (0:vsl), (0:e:0), (STQ:a:l)s (0:v;3).

When the ''interchange" operator comes to be processed by the assonbler, the

assembler's push-down list contains (or refers to)

Position: m m*l m+2

Contents: B CLÄ G (0:e:0)

FDH D

which changes by the "interchange'' operator to

Position: m m+1 m+2

Contents: VL0 CIA C B

FDH D

at which point B is now available as the argument for the operator (STQsajl)

which converts position m+2 of the push-down list to STQ E. The last operator

then completes the evaluation of the program.

2.5 Example 5

Simple Relational Expressions

Here we consider relational expressions such as X > 0 , X > Y and so on,

where the general form is E]_ Op E2, where Bi, Eo are expressions which have

values which are numbers and Op is a relational infix operator specifying a

condition that holds or does not hold between the values of E^ , Ep . The

result of the operation is a binary VPJVJ, which we shall take to have the

following interpretation,

(a) If the condition of the relation is satisfied, the object program is

to branch,

(b) If the condition is xiot satisfied, the branching operation is to be

ineffective.

34

We shall consider only those relations where B, Op K, is equivalent

to E, - B, Op 0, e.g., where Op is the relational operator -, ^, >, > etc»

The object program that results will be a computation of B^ ~ &>i followed by

a branching instruction« The program branches if the test is satisfied,

We shall consider first the case £5=0, and then treat the more general

case. In anticipation of the next example, we shall provide a moans of

complementing the relation during syntax analysis, so that, for example, X = Y

oould be translated as if X 7^ Y had been the text.

For the special cases, the initial translation from the original names

to the co—Ordinate 116.1*163 can be extended to recognize the dj & grams 's:0 ^0 etc,

translate them by single characters =' , f etc. These characters will now

distinguish the special -ases.

Then the syntax program for the recognition of simple relational expres-

sions is an extension of the program for recognizing arithmetic expressions,

which is used to scan the arithmetic expression part of the relational expres-

tion. The appearance of the relational operator forces an exit from that

recognizerr whereupon the appropriate branching instruction can be added to the

output according to the typs of relational operator. We shall give an example

for translation to the IEM 709 for the operators «•' and ^s „

The syntax program follows: it uses a new assembly operator (DsdsO)

which constructs a branching instruction with machine instruction code u, and

notes in the assembler's push-down lists that the constructed instruction lacks

a transfer address which must be filled at some later time in the assembly.

35

R > -< E >- 0 K(A+)-
K(A-)-

K(i-) 1
/) K(Ä + }

-<XCA>- -CTZE>- (OsvsO)"

K(A-)-

m-y -<KCÄ>- --<TNZ>- '(Osv:0)"

etc.

TZE

TNZ

XCA

'(TZE;d;0)Si

'CmZtdtO)"

'(XCAiasO)"

The complementary recognizer < R > is similar to < R > but with the

comparators =' and j^' interchanged; it can therefore be constructed

with much in common with < R >,

For the general case En Op &?, the strategy for constructing a recog-

nizer is to analyze the expression E^ as in example 3 until the relational

operator is encountered. At this point a chain of comparators can be used

to test for each relational operatorj and make a mark in the syntax machine's

push-down list using an M operation: the state of the recognizer < E >

(i,,e„, A+. A-, Q+s Q~) may then be tested so that < E > may be entered again

* Two IBM 709 machine instructions have been introduced, namely

TZEptransfer control if the AC is zero.

TNZ8transfer control if the AC is not zero.

36

(but not at its normal entry point) to complete the recognition and corres-

ponding program generation for the expression -Ej+Eg *. That is, the syntax

machine is programmed to read En Op Eo and provide an output as if it had

been reading the arithmetic expression -B^+E2 . This is achieved by entering

< E > for the second time at the position (in the flow diagram of Example 3)

A- (or A+ , Q+ , Q-) if the output state of < E > on its first use had been

A* (or A- , Q- , Q+ respectively). On the exit from < E > for the second

time it is possible to add the appropriate branching instruction, since the

specification of the relational operator has been preserved by a marking

Operation,

* For this process to be effective, the expression Ej must be signedj
this necessary sign can be added in the preliminary scan, just as
the characters HD were replaced by =' for the simpler case.
Thus X=Y should be transformed to X=+Y .

< H> <R1>

< Rl > -< E

K(=)-
I

!
K(>)-

K(>)-

K(<)-

K«)-

<TZE>

-<ni2>-

-K(A+)-

-K(A+)-

K(A+)-

•K(AO-

M(=)-

M(/)—

-M(>)-

• M(>)-

-M(<)-

.M(<V

•K(A+

K(A-)-

^.TGH>-

-<TL2>-

■^TGE^-

-<TL£>-

-<TLE>-

-<TLS>-

-<TGK>-

.K(A-)-
I

K(A+)-

m-y-
K((i+)-

37

1)

'(0:vS0)"

-<EA(+)>-

^CE(A->-

-<E(Q+>

^E(Q->—

^

M(A-)-

•M(A+)- -> Time

Notes 1) TGE is a subroutine to construct on the output tape an
xnstruction to branch if AC is greater than or equal to
zero. To write this we require an assembly operation not
yet introduced.,, In example 7 we return to this matter.

2) The other subroutines have obvious significance. The
subroutine <E(A+)>is the subroutine < E > of example 3
entered at the point labeled A+ „
Similarly for the others.

2)

Program for simple relational expressions.

38

2.6 Examplie 6. Combinations of Relatdons

In this example we treat combinations of relational expressions using the

Boolean operators ''and,'* ''or'' and ''not.'* In so doing, we introduce a

novel algorithm for the analysis of logical expressions by use of the syntax

machine.

In examples 1 to 4 we were translating programs which did not have branch

points in their control sequencing so that the object program was obeyed

sequentially. In example 5, we had object programs with a branching operation.

Now we combine programs that have branching.

We define a program block as a block of object program which is an assembled

single instruction of object code or a block of code assembled from program

blocks. Program blocks may be conditional, when they haTe one skip exit in

addition to the exit of normal (sequential) sequencing - or they may be uncondi-

tional, lacking the skip exit. Within a conditional program block there may

be many branching oper-ationa, but Lhe block as a whole has one skip exit.

Program blocks may also be labeled, but by one label only.

For example 6, we need three assmebly operators for combining conditional

program blocks. These are (Osvsü), (OswsOj and (OsxsO). The first of these,

(Osv;0), has been used before without all its properties be:ing announced; it

combines those program blocks which are its arguments into one program block

whose skip exit is the common skip exit of the argument blocks. If all the

arguments are unconditional, the result is also. At most,one of the arguments

may be labeled, which label (if any) is the label of the combination.

The operator (ChwsO) has two operands, which are program blocks. If (A),

(B) stand in place of program blocks, the block (A),, (B), (0;w;2) is the ccmbina-

tion of the blocks (A), (B) (in that sequence) with the skip exit of (A) joined

to the label of (B). The conditionality of the result depends on the conditiona-

lity of (B); the result is labeled by the label of (A).

39

The third operator is a labeling operator (0:x:0), which has one operand,

which must be an unlabeled program block. It provides a label for the block

so that a transfer of control could be made to skip over the block.

The diagrams for these operators are

dh

m
i

^

skip exit

A, B, (0:v:0)

skip exit

A, B, (0:w;2)

V

k, (0:x:l)

They provide the mechanism for realizing conditional expressions. For example,

if P(A) is the proposition that the skip exit is the actual exit from A ,

when program A is i-iui, then

p(A,B,(0:v:2) = p(A) v p(B)

p(A,B,(0:x:l), (0sw;2)) = PHT A p(B)

The operators are chosen so that the normal exit from the first program block

is the normal entry to the second program block. Thus the program blocks may

be assanbled in position before the connecting operators (0:vsO) and (0;w;0)

have been reached. Together with negation, these operators enable binary

decision programs to be written for any Boolean function. Moreover, if the

logical operators = and £ are not used, the Boolean function can be

re-written by changing the operators only, without duplication or change of

ordering of the predicates or program blocks.

40

We are now in a position to vrrite a translation algorithm for the

source language string defined by

< CR > ;: = < Cl > or < CR > j < Cl >

< Gl > ::= < G2 > and < Cl > j < 02 >

< C2 > ::= < R > not <R> \ (< CR >)

where R are simple relations of the form Ei R E^ as treated in the

previous example,

The analysis is made in terms of the operators (0:v:0) and (0:w:0),

or rather in terns of the corresponding logical operators. Because the input

text is written using ''and,'' but the analysis is made in terras of *'w, *' we

require complementary pairs of recognizers so that teirms like ' 'R. and R„' '

may be translated to "net R, w R2',. In this example vre have to apply the

complementary recognizer to the first operand so that ''R, *' is translated as

if "not RT'' had appeared on the input string instead of "R_ ". The use of

De Morgan's rules also allows the "not" operarions to be passed inside

parentheses so that in the translation they apply only to the simple relational

expressions.

The syntax program < CR > follows

u

< CR > < ci > (or) < CR >- '(Oiv.O)"

< CR> < Cl > (or) < CR > >"(0:w:0)"

—>True

< 01 > < C >- ■> True

<C2>_1 and)—< Cl > ^"(Osw:0)'

error

< C > < C2 >

< C2 >

< C2 >

*-^True

Syr!.tax Program for Combining Relational Expressions

2.7 Eicample 7, Simple Branching Instructions

We deferred from example 5 the matter of how to write certain branching

instructions which have no counterparts as single Instructions of the machine's

code. For example, on the 131 709 to test that the contents of the accumulator

is greater than or equal to zero, we must first test for zero and then for

positive accumulator. This is because the number representation is by sign

and absolute value, and the branching instructions operate on the sign (TPL =

transfer on positive or TMI = transfer on minus) or on the absolute value of

the accumulator (TZE = transfer on sero or TNZ = transfer if not zero).

Thus to provide a branch on the accuBiu] a tor beins: positive or sere ws

require a TZE instruction followed by a TPL instruction both with the transfer

address. The assembly operators introduced in the last example now make it

possible to write segments of the output string that correspond to tests for

the inequalities in the source language, as follows

Source language Ouuput string translation

> (TZE;d:0) , (TPLsdsO) , (Osxsl) , (Chw:2)

< (TZEsdsO) , (TMI;d:0) , (Osxsl) , (Chw:2)

> (TZE:d;0) , (TPL:d:0) , (0;vs2)

< (TZE;:d;-0) r, (TMIsdsO) , (0svs2)

We can now construct subroutines to provide these output strings. For

example the TGR subroutine, to test > , in example 5 (second part), may be

written

<TQB> ss= <TZE> < Tl > "{OtvzO)" , where

<TZE> ss= a,(TZE;diO)iS

<T1>;:= <XPL> "{OixzO)"

<TPL> i%= "(TPLsd^O)"

The subroutine for providing a greater than or equal test is

<TaE> , whe'-e

<TGE> ::- <TZÄ> ^"P^ "(OtviO)"

and <rZS> and <TPI> are the subroutines described above.

2.8 Example 8. Iteration Statements

Trie purpose of this example is to introduce another syntactic operator

(or assembly operator) of order 2 which will be useful in the construction

of program loops. Consider two programs A , B where A and B stand for

the syntax machine output for these programs. Program A must be a labeled

program and prograin B must be conditional. Then the operator (0:y:0) applied

to A , B forms a combination of A and B in that order with the skip exit

of B connected to the labaled entry point of A , as shown below.

C = A, B, (0:y:0) > B

-^T

The result program C may itself be conditional, if A was conditional,

or labeled if B was labeled. In other words C has the skip exit (if any)

of A, and the label of B (if any).

As an example, consider an iteration statement whicn in the source language

consists of three parts concatenated e.g., A B C , where

A represents an initiali?ation of variaMe s (i.e., iterates).

B represents the calculation of new values of the iterates

from the old.

C represents an end test for the iteration,

so that the diagram for the program is to be

 <

HZHHä]—>—0—>

Clearly C is a conditional program and A must be labeled: the postfix

representation is either

D= A, (Chx:l), B, (0:v:2), C, (0:y:2) ... 2,8.1 or

D2= A, (05x:l), B, C, (0sv;2), (0sy:2) ... 2.8.2

according as 3 is first combined with A or with C. In 2.8,1

B could be a conditional program, but not labeled: in 2.8,2

B must be unconditional but may be labeled.

We refrain from giving further examples, as we now go on to consider the

properties of the translations that have been illustrated in the preceding

example s„

Remarks on Part 2

In examples 1 to 8 we have shown various examples of translation that the

syntax machine and a suitable post-assembler can make. We now gather together

some of the salient features.

The principal property of the process is that the ordering of the variables

is not changed by the translation, except by the re-ordering of arithmetic

expressions by parenthesizing and by the interchanges made by the operators

J'b'' and ''e''. Example h shows how the role of the interchange operator '"fo''

can be taken over by the operator ''e"', so we may consider !Se'
8 only. The

properties of "e*' depend on the assembler.

The simplest assembler would be one which assembled directly into machine

code and placed each instruction into its final position. Thus "e" could be

used to effect the transformation 2.4.1, i.e.,

(D), (E), (OsesO)-» -A.0> (E). (D)

only when (D) stands for the address part of an incomplete machine instruction,

-.«rhere (D) is stored directly in the assembler's push-down list and not merely by

reference to an assembled set of machine instructions already located..

45

We hope to show in part 3 of this report, how this condition on transla-

tion may be relaxed by using the mechanism of declarations.

Another property of the object program is that no advantage has been taken

of cOTmon subexpressions, to economise in the object code. It is the author's

opinion that the search for common subexpressions in algebraic formulae is a

simple matter for the composers of programs and should be left to than rather

than to the mechanical translators if it is desirable to have a quick translation«

The same may be said about many other forms of economization which could be made

unnecessary by simple rephrasing of the source program„ Example 3 shows,, however,

that economization in the use of arithmetical registefs is poaaible.

The syntax machine can differentiate many special cases of the source-

language text where the properties of the target machine allow the use of program

tricks. With some of the extensions to be proposed in part 3 of this report,

it becomes possible to recognize many special cases in the source language that

are of common occurrence, and to provide corresponding segnents of machine code

(or macro-instructions).

The program combination operators v, w, x, y provide a quite powerful

notation for combining programs with branches; in effect they provide a method

of writing a wide class of branched programs without using explicitly written

labels. For example, in the iteration 2.8.2 of example 8 the iteration part B

could be entered from some program other than the initialization program A„

46

3,1 Part 3. Declarations

Declarations are made about symbols used in the source program and alter

their meaning. They are used to specify which names apply to the various

classes of objects in the program, e.g., which are names of floating-point

variables, fixed-point variables, functions, procedures etc. They may also

be used to define new functions in terms of existing functions, or to define

symbols which stand in place of whole segments of text. In addition the

mechanism of declarations may be used internally in a translator.

We distinguish between two occasions where Declarations affect the translator,

when a Declaration is made and when a Declaration is used. For example, if

we wish to use the name ''ABC1' as the name of a function, it must be declared

to be the name of a function. This declaration may be explicit, when a segnent

of the source text says ejqalicitly that ABC is a function, or the declaration

mav be intnlicit- when A.BC appears in such a manner that the syntax shows that

a declaration about ABC is being made as a part of another declaration, as for

example in

ABC(X.Y) = X sin (Y),

which definition might be given without any explanation in the source language,

because this form of expression could only be what it is, a definition of a

new function whose name is ABC.

The declaration is used whenever the objects named in the declarations

are used elsewhere in the text, as for example if we IB e the function ABC as

part of an arithmetic expression, e.g.,

Z= X + /TC (X+y,w)

hl

We sbKll fliscuss three types of declaration

(1) Declarations about the syntactic properties of names.

(2) Declarations which define substitutions, jhere a declaration is

made that a symbol stands in place of a string of symbols.

(3) Declarations about substitutions in which, when substitution

is made of a string for a symbol, the string is modified by

parameters.

3 »2 Declaration3_a.bout Syntactic Properties

An example of a declaration about syntactic properties would be

Integers, A, B, Cl

which delai-es the names A, B, Cl to be the names of integer variables. We

regard the properties of names as syntactic properties9 because in the analysis

of statements we must distinguish between the various types of variable , and

between the names of variables and the names of functions„ Our intention is

to replace the names like A, B, and Cl by symbols like I^p 1) and IT which are

so constructed that the syntax machine can recognize them as the names of

integer variables» The. subscripts could have uses in storage allocation.

However,, we must first recognize declarations before we can act on them.

To recogniz-e such declarations and distinguish them from other forms of state-

ment ws assume that the Syntax Machine is analyzing programs statement by

statement« Let us suppose that there are several sorts of property for which

we wish to make declarations about nanes. We can start the scan of statements

by checking whether any of the leading words are signals for declarations. A

chain of comparators will do this„ For example, if we have the declarations

about integer variables, functions etc., we could use the following syntax,

program < SD >„

46
< SD > ::= < DI > 1 < DF > |... < ND >

where

< DI > ::= integer js 1 Ju < ZI > "(0:m;0)"

< zi > :?= < zn > f< zu >1

< ZI! > :; = < ZI2 > j D

< ZI2 > SS- L fm.1 "(IsksO)"

and < DF > is similar to < DI > but begins with a chain of comparators for the

word, "Functions'' (or its singular), and the subroutine corresponding to < ZI2 >

is named by the operator "(FsksO)". < ND > is the syntax program for state-

ments which are not declarations« L is a comparator for letters of the alphabet

and NL is the comparator for letters awi numerals. U is a comparator for all

characters but the statement ending punctuation,

The syntactic operators are

' "(Osmsr)'* Return control to the syntax machine from the assembler,
resetting the assembler push-down list so that the next
symbol placed there will be in the same position as the
first symbol used in this use of the assembler.

''(D:k:r}'' This is a combined table lookup and table constructing
operator. It constructs and uses a table of equiva-
lences befcvf?en external and internal names. A possible
definition of this operator might be:

(a) If DO £.nd the external name is not already stored,
store it in the proper place and generate a corres-
ponding internal identifier, placing it in the
corresponding position of the table and in the
result position of the push-down list.

(b) If D^O, find the place in the table for the
external name and in the correjrponding position
for the internal name place a generated symbol D^,,
where any name so generated may be recognized by
a comparator as an internal identifier of class D.
Place DJ in the push-down list»

(c) Otherwise, look up for the external najne and
place the corresponding internal name in the
result position of the push-down list.

In the use of this operator in the making of declarations,
only operation (b) would be used. Part (a) of the operator
makes it useful for deeding with the class of names about
which no declarations are made. A possible method of storing
external names is discussed by Williams (Comm. ACM 2. 6. p21

June"1959)o

49

In the program < DI > and, corresponding programs, the return from the

program must be made in a special way. When the operator ''((hnur)" has been

written on the output string from the syntax machine, the assembler is then

entered to evaluate the part of the output string generated by the subroutine

< DI >; after the evaluation process, control returns to the syntax machine

which is set so that further output overwrites the string which the assembler

processed.

If the program < DI > is applied to the example at the beginning of

this section the syntajc iBachine produces an output

whose evaluation by the assembler will store the external names and generate the

corresponding internal names.

In statements which are not declarations, external names must be replaced

by their internal name equivalents. This may be done by the program which we

shall discuss in the next part where we show how statements may be handled by

a similar mechanism to substitution declarations.

3.3» Substitution Declarations

We now consider the type of declaration where a string in the source language

is given a name, which may thereafter stand in place of the string. There are

two sorts of replacement which we might consider; replacement in the input string,

and replacement in the output of the syntax machine. The latter is what we

shall consider as the medhanism is useful in dealing with non-declaratory statements.

We take, as an example of this sort of declaration.

Let HI t= A=B+C

by which we define HL to stand in place of the statement ''A=B+C'!. As before

we can write a program with a chain of comparators that check the presence of

the word "Let'' before proceeding in the manner particular to this type of

50

statement. The program is called

< DL > ::= < IdF > : = r<DL>] "(OsisO)"

<ldFl>::= L [N];] "(F:k:0)!I , < IdF > ::= < IdFl > "(OsjsO)*'

<DLL> ::=<Id>|u

r »TT ^> » » /^,l_- r\\' * id > tt~ IJ < «ij i \''JiB.l\JJ

where U is the comparator for all characters except end of statement

punctuation.

When this program is applied to the example the resultant string is

.... B, l.iT'.k-.Z), (Ojjsl), A,(0:k:l)9 =,B,(0:ksl), *,C.(0ska), (Chit6)

and because of the special treatment of subroutine returns associated with the

operator \0'i2.t0jt this strxng is now evaluated by the aasenibler. What is to

happen is this

(a) The external nan'e HL is processed by the operator (Fsks2), with the

result that the internal identifier F(B1) is placed in the push-

down list.

(b) The operator (0:j:l) is next encountered. Its operand is the

internal name generated in (a). Its purpose is to set up a table

of absolute addresses where the processed string form of the

declaration will be stored. This address will be that occupied

in the example by the character B. The table of locations of

processed strings then contains F(B1) and L(B) where ICE) is the

location of the first character of the string in process. The

result in the Push-down list is a null symbol ^A-, .

(c) The k operators replace A, B and C by the corresponding

internal names.

(d) The operator (0:i;r) then sets the syntax machine to work on the

result in the assembler's push-down list which is now

51

where 0. is the internal naice of A, and, of course, is now a single

character by which the declared syntactic properties of A may be

recognized. The syntax program starts at 0.. The operator (ö:i;6)

left in the push-down list now acts as an end of statement mark.

When the syntax machine is applied now it analyzes the string by the type

of program of which examples were given in the second part of this report.
the

On completion of its work,/program exits via a special true return to the

syntax program that called < DL >. This abnormal return switches the input

of the syntax machine back to the original string. This abnormal return situa-

tion can be anticipated when control left the syntax machine for the assembler,

and the position of the input string stored.

The processing of non-declaratory statoments can be done in the same way

except for the treatment of the name of the string. The syntax program is < ND >,

< ND > ::= < ND1 > f < DLL >] "(OsisO)"

< NilL > ss^ \uintO}

and < DLL > is as before.

If < ND > is applied to the string "&.=B+C'', the first output string is

..., (ChnsO), A,(0:k:l), =,B,(0;k;l), +,C,(0:k:l), (0:1:6)

The processing proceeds as before except for the action of the operator (OsnsO),

which is to generate an internal formula symbol G_ as its result. Otherwise,

it acts like the operator (OJJJI) in placing the internal formula symbol in the

table of processed string locations. The result is

... , Gr> 0A, =, 0^ +, 0G, (0:1:6)

When this comes to be processed by the syntax machine, processing starts at the

second symbol as before, since the result of the operator (0:i:6) placed in the

push-down list is merely Gr„ As a consequence, the push-down list of tihe assem-

bler contains a list of symbols, one for each statement processed. For declara-

tions this symbol is the null symbol; for other statements it is the internal

52

formula symbol. When all statements have been read the string in the assembler's

push-down list stands in place of the program, which now exists in corresponding

order as segments on the output string of the syntax machine. These segnents all

end with a punctuating sym'i>ol that was added by the second pass of the syntax

machine.

The assembler also has a second pass, which is an assembly to machine-

language code. It is here that the substitution of strings for internal

formulae symbols and declared string symbols occurs. Unless a ''Load and Go''

type of assembly is required this second

assembly would be done when the compiled program is loaded. Actually the loading

process would also include a syntax analysis since it is very easy to incorporate
done by

corrections at load time by replacing whole statements. This would be/writing a

declaration for the corrected statement, using the internal fonamla symbol for

the string to be corrected.

The expansion of internal formulae symbols is done by the assembler switch-

ing its input. This may be explained as follows.

Suppose that the assembler is reading from a string SI and finds internal

formula symbol. The table of string locations is consulted to find the absolute

location of the first symbol of the string. The assembler takes this next»

noting that it has to return to the original string when the end of the

secondary string is reached. Clearly this process is recursive, if all the

return addresses are kept.

3.4 Declarations about Macro-instructions

An important class of declarations is that in which macro-instructions

are defined by a declaration such as

Macro f(X,T,Z) = X(Y+Z)

where the form on the left, namely F(XfI,Z), is short for the expression on the

53

right. The macro-inatrucLion is different from the closed subroutine in th^t

every time the short form is used in the program a modified copy is placed in the

appropriate part of the target program. In the definition, the parameters (i.e.,

IfT,Z in the example) are dummy symbols.

There are two ways in '«rhich we might approach this problem, by using substitu-

tion methods on the input string of the syntax machine or by using substitution on

the output as in the previous section. In the first method we would consider macro-

instructions to be merely shortened ways of writing ports of the source language

with the expansion to full form being made in the input string, so that, for

example, writing F(ä.,B,C) is completely equivalent to writing in its place the

expression A(B+C). This method has the advantage that we do not need to make any

declarations about the modes of the variables (i.e., whether the variables are

integer variables, floating-point variables etc.). The second method is more

appropriate for large sections of a program, such as the ALGOL procedures. Here

we deal with Method 1.

The macro declaration is processed as followst

On the first pass of the syntax machine the word ''Macro'' can be recognized

and program control switched to the program for processing the rest of the decla-

ration. The program scans the text and produces a string whose evaluation by the

assembler will leave the following pattern on the output string. For the example

"Macro F(X,T,Z) s= X(T+Z)", the pattern is

Cell address n n+1 n*2 n+3 n+4 n+5 nv6 n*-? n+8 n+9 n+10

Contents 0 0 0 $ n (n+T + ri+2) ^

The overiined symbols have a special effect on the syntax machine. To

distinguish them from normal symbols, they might be negative. The first three

cells are to hold the names which will be the parameters of the macro when it is

used : the symbols ^ and ^ cause switching of the input, and output of the

ayntax machine; the symbols like n are address symbols, in the sense that when

54

n is read by the syntax machine, it acts as if it were reading the symbol from

the cell whose address is n .

The program for making the declaration is < MD >.

<MD> ::= macro < MD1 > (< MD4 >) < MD10 > < MD ? > "{OtmtO)'

<MD1>::= < MD2 > "(OrprO)"

<MD2>::= < MD3 > "(0:j:0)"

< MD3 > ;:= L fNL] "(MtksC))"

<MD4>ss= < MD9 > [< MD5 >'l

< MD5 > ::= , < MD9 >

<M)6>;s= L [M.^ "{OtktO)"

<MD7>:?= < MD8 > |< MDg >J "{#'.3:0)"

<MD8>:;= < MD6 > "{OtrxO)"

<MD9>:;= < MD6 > "(OsqsO)"

< MDXO > i'.= : = "(5i:3:0)*'

The s.pplicatiüü of MD to Lie example will yield an output string; -

.... Fs (Msksl), (0:j:l), (0:p;l)f X, (0:k:l), (Osqil), Y, (0:k:l), (0:q:l)

, Z, (Osksl), (Osqsl), (g(:s:0), X, (0;ktl), (Oirsl), (,T,(0Jk:l), (Osrtl), +

, Z, (Osksl), (0:r;l),), (0;st6), (0:m:3) ♦

The new assembly operators are; -

(Ospsl) switch the output from the assembler to the output list.

This ensures that the coded definition of the macro is placed on the

output string. This operator also clears out a temporary table used

by the q and r operators.

(0:q:l) In the temporary table mentioned above place the internal name (which

is the operand) and the absolute location in which this was stored

at the time (0;q:l) was applied to it.

♦ as with other examples it has been assumed that the input text
contains no spaces. This simplifies the exposition.

55

(Osr;l) The operand is an internal name. Look for it in the temfjorary table

and ii" it is found there, replac* the operand by the absolute address

rioted against it in the temporary table; othervd.se the operator has no

effect. The purpose of this operator is to replace the parameters by

an address referring to the pisition in which the actual parameters

will be placed when the macro is used,

(OsssO) No matter what the operand count of this operator , write the

character from the data field in the place occupied by the operator,,

The evaluation of the output of the first scan of the syntax machine causes

(1) The name of the macro to be written in the table of processed strings

together with the address (n in the example) of the processed macro

definition,

(2) The p operator then switches the output from the assembler to the

output string,

(3) The q operators then take note of the formal parameters in the

definition, so that the r operators can replace them in the processed

string by the absolute address of the location to which the internal

names of the parameters will go when the string is used.

(4) The s operator writes a mark 0 which will switch the input of

the second scan of the syntax machine when the macro is used.

To use such a macro we have to make some extensions to the syntax machine,

so that the input can be switched from one text to a subsidiary text and then

returned to the original text-. The symbols that are special in this respect are

symbols of class M denoting internal macro names, the special symbols ^, <ji

written by the operator s , and the absolute addresses written by r operators

in the processed form of the macro definition.

56

Now consider what happens when the syntax machine scans a test in which the

internal symbol M_ appears. This would not be in the original text so we are

talking about the second pass of the syntax machine when its input has external,

names replaced by internal names. Let the original source text contain

''F (A,B,C)" where F is the macro of our exaiaple and A.,B,C are names of varia-

bles or constants. Then the corresponding string within the input for the

second pass of the syntax machine is Hp, (»0«» 0», 0C»)» w*1*1* the commas are
used to separate the characters of this string, and the characters 0. etc. are
the internal character names of A etc.

A special comparator is used for symbols of class M i.e., names of this

type of Macro. If such a symbol is recognized by a comparator, the output of

the syntax machine is switched to the address where the macro definition begins.

The syntax program then fills the parameter cells with the names of the parame-

ters used here, namely 0A, 0R and 0™ , When these have been read the syntax

machine uses yet another special comparator to check the presence on the current

output position of the symbol Q and if it is found the input of the syntax

machine is switched to the next position of the macro-definition list (cell n+4

in the example), and the output list of the syntax machine reset to its state

before the M symbol appeared.

The syntax machine now scans the rest of the macro definition until the

symbol 0 appears when the input of the syntax machine is switched back to

what it was before the last M symbol appeared. 3j the usual technique of

push-down lists it is simple to make these macros recursive.

The syntax program for the use of macros is

where the comparators M and 0 are the special comparators mentioned in the

text. This should be placed in all parts of a syntax program where an M

might be under the scrutiny of the syntax machine.

57

Part J+. The Assembler

In parts 1, 2 and 3 much has already been said about the assembler.

We consider now only one part of the assembler, that used to assemble postfix

strings to target machina language, using the operators "a'", "c" and "d"

which form single machine instructions and the operators "e", ''v", "w",

"x." and "j''. which manipulate program blocks.

The assembler for these operators is best considered separately from the

assenbler for other operators since the push-down list requires four registers

AE . BR., GRj. and LEp on each level r . ABp holds the names and operators

from the postfix string being assembled, BEj. holds the asäeEibied fonns of single

instructions provided by the operators "a", "c" and "d", CR holds an

address which refers to a conditional machine instruction or a conditional pro-

gram block. It also holds a negative sign * if the level r is holding a

single machine instruction in BR . LR holds an absolute address which is

a transfer point generated by a label. There is also a location counter whose

contents L give the address where the assembled instructions of the program

go when transferred from ths push-down list.

For this assembly it is assumed that the ''k'' operator which provided

internal names generated the subscripts on these names by incrementing a counter

so that the subscript is a relative address for each variable in the block for

variables of that type. The final values of these counters (one for each class

of variable) can be used to provide base addresses for each block, from which

the absolute addresses of any variable can be constructed by the operator "a.",

* We assume that each register of the push-down list has a sign
position and a value position, so that representation is by
sign (+ or -) and value ,

53

4.1 The Operator. (D:a;l)

When this operator appears in the position AIL the internal name which

is its operand is in AR . The absolute location corresponding to the internal

name is combined with the machine instruction specified by D and the result

placed in BR . CR..-. is made negative to show that BR -i contains a single
n—1 ir-j. n—j.

machine instruction. The push-down list level counter is then set to n, so

that the next item is brought into AR. If the operand was the name of a

working location send it back to the list of working spaces (see below).

This operator combines a function specified by D with a working-space

location. Associated with this operator and with operator ''a"is a list of

used working spaces. If this list is empty then c must construct the

name of a working location which it can do by incrementing a counter whose

initial contents was the address of the beginning of a block of storage allo-

cated for working space. If WS is internal name of this working-space

variable, (selected from the list, or constructed) then the result in the push-

down list is

Ä^ = WS

BIl = D;L(WS) i,e., the machine instruction with function D and
address L(WS) which is the absolute location
corresponding to the working space name WS„

C^ is negative.

where the operator (D;c:0) was in A^ , Note that the operator* ''c*" acts

like the operator "k'' in the production of an internal name. We want an

internal name to appear in Aflj^ because it will subsequently be used as the

operand of an ''a*' operator. The next item to be read into the push-down

list must enter level n+1.

59

4.3 The Operator. (D:d;0)

If this appears on level n in AH then we have in the result.

BR = 0:0 the machine instruction with ze7."o address.

CBJJ = - n to show that there is a machine instruction in BI^.

The next item to be placed in the pusn-down list must be placed on level n+1 .

4.4 The Labeling Operator , (0;x;l).

This has two cases according as the operand is a machine instruction

within the push-down list or Is a block of code assembled in its final position,.

Case 1 ; The initial configuration of the push-down list is

A^

BHJJ holds a machine instruction

CHJJ is negative

LRri should be positive

AB^ (Osxsl)

This case is recognized by CI^ negative. LR should also be positive,

indicating an unlabeled instruction. The action of the labeling opertor in this

case is to mark level n on the push-down list by making LR negative.

Case 2. In this case OR is positive, LR,^ is positive and contains the

address which will be the value of the label if one is required. This is

furnished by the the operators ''v", "w" or "y**. The action is merely to

make LB. negative.

In both cases the next item is read into position AR +1 .

60

4.5 The Operator. (Otvtr)

Suppose that this operator appears in AIL+-. I then its operands are in

levels n through n+r-1 of the push-down list; they may be machine instruc-
list

tions still in the push-down/(recognized by the CE part of the level being

negative) or they may be blocks of machine code already stored,,

The first action of the operator is to check that there is at most one

labeled operand, by testing all the LE positions of the operands? those levels

that are labeled will have negative LR .

Then the operands are taken in order and process A applied to those that

are single instructions still within the push-down list. Process A. is conmon

to operators * sv", ''w" and ''y'' I i^ places the single instructions on their

final positions in store, using L which is incremented by 1 whenever single

instructions go to the store. If a conditional instruction is stored fron; the

push-down list in location L then L is copied into the GR position and L+l

is copied into the LR position. In both instances the signs describing condi-

tionality and labeling are preservedc At this point all the operands havi? been

stored in their firal positions.

Now we must connect, any skip exits from the operands. A single machine skip

instruction will reside in its final position with its transfer address zero,

and the corresponding CR position will point to the location of the instruc-

tion. For program blocks the CR position will point to a location holding one

of the conditional instructions in the block. If the transfer address here is

zero, then this is the only conditional instruction in the block that contributes

to the skip exit. If the address of the conditional instruction is non-zero it-

is pointing to another conditioröl instruction contributing to the skip exit.

Thus, the CR contents is the first of a chain of addresses ending with

address 0 , which specify locations of instructions contributing to the skip

exit, (except the last, 0).

61

> > »> In the v operator, these chains are linked together into a single chain,

which now shows which are the conditional instructions requiring transfer

addresses. The first member of this chain is stored in CB^ . In LB^ is

stored the absolute value of the label if any of the operands were labeled.

As usual LR shws labeling.

4.6 The Operator. (0:w;2)

If any of the operands are single instructions then process A is

applied to them, reducing the operands to refer to prograir. blocks in their

final Position., Ths first and second c7*grands are then checked for concii—

tiomlity and labeling respectively. Then process B is applied to link the

skip axits from the first operand with the label of the second operand, by

proceeding down the chain of locations in which are to be inserted the address

value of the label. Finally, the conditional information CIL+-, for the second

operand replaces CB^ to form the result on level n. The next item is to be

read into level n+1.

Uc7 The Operator. (0;y;2)

The action of this operator is almost identical with that of (0:ws2) but

the label from the first operand is used with the chain of locations of condi-

tional instructions of the second operand.

In the operators "v**, "w" and "j" it may be necessary to provide a

label value in anticipation of the use of "x." to label the result. If the

result of the operation is an unlabeled block and process A has been used to

insert- single instructions in their final locations then the LH position of

the result should hold +,L+1 , where L was the address of the location last

used by process A.

62

4.8 Tha Operator. (OietO)

If this operator appears in AH. , then the data on level n-2 of the

push-down list is placed on level n , and tha registers on level n-2 set to

zero to indicate nullity. The next item to be read to the push-down list

goes to ARJ^-L»

63

Conclusion

This report has outlined a method by which a Compiler can be programmed

(by syntax machine programs) to accept various source languages» Apart from

the final assembly of the postfix string to target-macnine code the method is

not particularly dependent on the computer making the translation, since the

compiler is constructed to perform interpretively on the syntax program and

on the syntactic operators in the postfix strings.

The syntax prograsa will not be lengthy, as is demonstrated by the examples

of Part 2, Perhaps 300 - 400 instructions in the syntax program are sufficient.

The quality of the translation will be variable, since no method of

economisation of subexpressions is included, nor is any method of economiaation

of index register proposed. Methods for these could be developed, for example,

by modifying syntax machine so that it could

(1) Analyze arithmetic expressions to produce the so called three-address

form (this might require a right to left scan) and search for common

subexpressions among the output»

(2) Abstract from the source language some parts, e.g., subscripts and

loop control statements, for analysis by a more powerful symbol

manipulator- with re-insertion in the program by methods like those

of Part 3. This would require extensions to the syntax machine so

that its subprograms (recognizers) could be written with parameters.

The speed of translation is likely to be high; it is estimated that it would

take 1000 instructions in the computer making the translation to produce one

machine instruction of the translation. On the IBM 704 for example, this

means that translation is at the rate of 40 instructions per second.

The major part of the syntax machine has been simulated on the IBM 65O.

This interpretive simulation program required 60 instructions and simulated

6k

comparators for single characters and the subroutine facilities described, in

Part 1; the output mechanism was also simulated. Each pseudo-instruction required

two cells of storage. Some coding experiments indicate that the assembler wiJU

require not more than about 400 instructions. Thus, it seems possible to write

a quite powerful Compiler in 500 instructions plus the syntax program.

CONTRACTOR

Carnegie Institute of Technology
Computation Center
Pittsburgh 13, Pennsylvania
Attn. Professor Alan J. Perils

LIST OF RECIPIENTS

Assistant Sec of Def, for Res« and Eng.
Information Office Library Branch
Pentagon Building
Washington 25, D„ C

Chief of Naval Research
Department of the Navy
Washington 25- D= Co
Attn, Gods 437, Information Systems Br.

Chief of Naval Research
Department of the Navy
Washington 25, D0 C
Attn» Code 923

Director, Naval Research Laboratory
Tech. Information Officer /Code 2000/
Washington 25, D. C.

Connianding Officer , Office of Naval Res,
Navy No. 100, Fleet Post Office
New York, New York

Commanding Officer^ 0NR Branch Office
346 Broadway
New York 13, New York

Goamanding Officer, 0NR Branch Office
495 Svmmer Street
Boston 10, Massachusetts

Office of Technical Services
Technical Reports Section
Department of Commerce
Washington 25s, D° C.

Chief, Bureau of Ships
Department of the Navy
Washington 25, D. C, (Attn. Code 280)

Chief, Bureau of Ships
Department of the Navy
Wasnington 25, D.C (Attn. Code 677)

Armed Services Technical Information Agency
Arlington Hall Station
Arlington 12, Virginia

Chief, Bureau of Ships
Department of the Navy
Washington 25, D,C„ (Attn. Code 684)

Chief, Bureau of Ships
Department of the Navy
Washington 25, D.G. (Attn. Code 686)

Chief. Bureau of Ships
Department of the Navy
Washington 25D D.C. (Attn. Code 687E)

Chief. Bureau of Ships
Department of the Navy
Washington 25, D.G. (Attn. Code 6S7F)

Chief, Bureau of Ships
Department of the Navy
Washington 25, D„C. (Attn Code 687G)

Naval Ordnance Laboratory
White Oaks
Silver Spring 19, Maryland
Attn. Technical Library

David Taylor Model Basin
Washington 7, D-C,
Attn. Technical Library

Chiefs, Bureau of Ordnance
Department of the Navy
Washington 25, D.C

Naval Electronics Laboratory
San Diego 52, California
Attn. Technical Library

Naval Ordnance Laboratory
Corona„ Galifomia
Attn. Robert Conger, Electr. e Mag. Div,

LIST OF ftfCIPIENTS Continued:

University of Illinois
Control Systems Laboratory
Urbana, Illinois (Attn, D. Alpert)

University of Illinois
Digital Computer Laboratory
Urbana, Illinois (Attn, Dr. RoEo Meagher)

Air Force Office of Scientific Rsoearch
Washington 25, D0C.

Air Force Cambridge Research Center
Laurence C Hanscom Field
Bedford, Massachusetts
Attn,, Electronic Res,, Directorate Library

Technical Information Officer
US Army Signal Research e Dev0 Lab.
Fort Monmouth, N„J, (Attn, Data Equip. Branch)

Gommarding Officer
Diamond Ordnance Fuze Laboratories
Washington 25. D, G.
Attn. Tech,, Ref. Section, /ORDTL 06.33/

Office of Ordnance Research
Box CM, Duke Station
Durham, North Carolina

Director,, National Security Agency
Fort Geo. G. Meade, Maryland
Attn„ Chief, H«np.

NaTal Proring Ground
Dahlgren, Virginia
Attn, Naval Ordn« Computation Center

National Bureau of Standards
Washington 2$, D. C.
Attn. Dr. S.N. Alexander

Aberdeen Proving Ground, BRL
Aberdeen Proving Ground, Maryland
Attn, Chief, Computation Lab.

Office of Naval Research
Resident Representative
University of Pittsburgh
Room 1.07 Salf Hall
Pittsburgh 13, Pennsylvania

National Bureau of Standards
Washington 25, D.C (Attn. Mr. E.D. KLbourn)

Dynamic Analysis and Control Laboratory
iiasaachusetts Institute of Technology
Caiübridgef Massachusetts
Attn. D.W„ Baumarn

Syracuse University
Electrical Eng. Dpt„
Syracus« 10, Mew York
Attn. Drc Stanford Goldman

Princeton University
Electrical Engrg. Dept.
Princeton, New Jersey
Attn. Professor F.S. Acton

Burroughs Corporation
Research Center
Paoli, Pennsylvania
Attn. A.J. Meyerhoff

Hycon Eastern, Inc.
75 Cambridge Parkway
Cambridge 42, Massachusetts
Attn. Mr. J.E. Deturk

Cornell Aeronautical laboratory
4455 Genesee Street
Buffalo 21, New York
Attn. Systems Requirements Dept.
Dr. Frank Rosenblatt

Lockheed Missile Systems Division
Sunnyvale, California
Attn, J. P. Nash

University of Michigan
Ann Arbor, Michigan
Attn, Dept. of Speech, Director
Speech Research Laboratory, Gordon Peterson

University of Michigan
Ann Arbor, Michigan
Attn Dept. of Philosophy

Prof. A.W. Burks

Census Bureau
Washington 25, D. C
Attn. Office of Asst.
Statistical Services,

Director for
Mr. J.L.McPherson

University of Illinois
Urbana, Illinois
Attr., Electrical Engr. Dept.,
Prof. H. Von Foerster

National Science Foundation
Washington 25, D.C
Attn. fies. Info. Center c Advisory

Serv0 Of Info, Processing

Wayne State University
Detroit, Michigan
Attn.Dept. of Slavic Languages,
Prof„ Harry H. Josselson

University of California - LA
Los Angeles 2U, California
Attn. I'ept. of Engineering,
Prof« Gerald Estrin

Columbia University
New York "", New York
Attn. Dept. of SLgctrical Eng.,
Prof, Ralph J, Schwartz

Hebrew University
Jerusalem, Israel
Attn. Prof. Y, Bar-Killel

Benson-Lehner Corporation
11930 Olympic Blvd.
Los Angeles 64, California
Attn, Mr, Bernard Benson

The University of Chicago
Institute for Computer Research
Chicago 37, Illinois
Attn. Mr. Nicholas C„ Metropolis, Director

Stamford Research Institute
Computer Laboratory
Menlo Park, California
Attn„ W.H. Kautz, Senior Research Eäibineer

Commander
Wright Air Development Center-
Wright Patterson Air Force Base, Ohio
Attn. WCLJR, Maj„ L.M. Butsch

US Army Biological Warfare Laboratories
Fort Detrick, Frederick, Maryland
Attn, Clifford J. Maloney,
Chief, Statistics Branch

Zator Company
140,5 Mt, Auburn St.
Cambridge 38, Massachusetts
Attn. Calvin N. Mooers

Air Force Office of Scientific Research
Washington 25, D,C,
Attn, Dr, Harold Wooster

Atomic Energy Commission
Washington 25, D.C.
Attn, Div. of Research

National Bureau of Standards
Washington 25, D.C,
Attn. Miss Ida Rhodes, 120 Far West

Naval Research Laboratory
Washington 25, D.C.
Attn, Solid State Electronics,
Code 5210, Mr. G. Abraham

Zator Company
140.5 Mt. Auburn
Cambridge 38, Massachusetts
Attn. R, J. Solomonoff

David Taylor Model Basin
Washington 7, D.C.
Attn. Arthur Shapiro

U.S, Naval TRaining Device Center
Port Washington
Long Island, New York
Attn. Mr. Arthur Miller, Code 3Uii.

Post Office Department
Office of Research and Engineering
12th and Pennsylvania Avenue
Washington 25, D.C.
Attn. Mr, R„ Kopp, Research e Development Div

Air Force Cambridge Research Center
L,G. Hanscom Field, Bedford, Massachusetts
Attn, Chief, CRRB

Research Air Development Center
Griffiss Air Force Base, New York
Attn, HCWID, Capt. B, J, Long

